a2 United States Patent

Wang et al.

US009183033B2

US 9,183,033 B2
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR ANALYZING
ROOT CAUSES OF RELATING
PERFORMANCE ISSUES AMONG VIRTUAL
MACHINES TO PHYSICAL MACHINES

Applicant: INDUSTRIAL TECHNOLOGY
RESEARCH INSTITUTE, Hsinchu
(TW)

Inventors: En-Tzu Wang, Hsinchu (TW); Tzi-Cker

Chiueh, Taipei (TW); Je-Jone Ko,

Hsinchu (TW); Shu-Chun Yeh, Hsinchu

(TW)

INDUSTRIAL TECHNOLOGY
RESEARCH INSTITUTE, Hsinchu
(TW)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 364 days.

Appl. No.: 13/707,038

Filed: Dec. 6, 2012
Prior Publication Data
US 2014/0165054 A1 Jun. 12, 2014
Int. CI.
GOGF 9/455 (2006.01)
GOG6F 9/46 (2006.01)
GOGF 11/00 (2006.01)
GOGF 15/173 (2006.01)
U.S. CL
CPC .. GO6F 9/45558 (2013.01); GOGF 2009/45591

(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,738,933 B2 5/2004 Fraenkel et al.

7,818,418 B2 10/2010 Bansal et al.

8,032,867 B2 10/2011 Bansal

8,180,723 B2 5/2012 Bethke et al.

8,302,079 B2 10/2012 Bansal
2008/0114581 Al* 5/2008 Meiretal.ccccovvvrnnen.. 703/13
2009/0028053 Al* 1/2009 Kannanetal. 370/241
2012/0005658 Al 1/2012 Bansal
2013/0305093 Al* 11/2013 Jayachandranetal. 714/37

OTHER PUBLICATIONS

Nguyen et al., Pal: Propagation-Aware Anomaly Localization for
Cloud Hosted Distributed Applications, Oct. 23, 2011, ACM, Man-
aging Large-scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques (SLAML °11), pp.
1-8.*

Wong et al., “Integrated System Diagnosis and Root Cause Analy-
sis”, Proceedings of the 2010 Conference of the Center for Advanced
Studies on Collaborative Research, p. 427-428, 2010.

(Continued)

Primary Examiner — Abdullah Al Kawsar
Assistant Examiner — Melissa Alfred
(74) Attorney, Agent, or Firm — Rabin & Berdo, P.C.

(57) ABSTRACT

According to one exemplary embodiment, a method for ana-
lyzing root causes applies an application-level dependency
discovery and anomaly detection to find application-level
dependencies in one or more virtual machines (VMs), and
generate an application-level topology with anomaly, and
then transfers the application-level topology with anomaly to
a VM-level dependency, and transfers the VM-level depen-
dency to a physical machine level (PM-level) dependency via
aphysical and virtual resource mapping, and eventually gen-
erates a group of event sets. A prioritized event list is gener-
ated by prioritizing the group of event sets.

18 Claims, 13 Drawing Sheets

APPLY AN APPLICATION-LEVEL DEPENDENCY DISCOVERY AND
ANOMALY DETECTION TO FIND APPLICATION-LEVEL DEPENDENCIES
IN ONE OR MORE VMS, AND GENERATE AN APPLICATION-LEVEL
TOPOLOGY WITH ANOMALY

210

TRANSFER THE APPLICATION-LEVEL TOPOLOGY WITH ANOMALY TO
A VM-LEVEL DEPENDENCY

220

[J—

¢

TRANSFER THE VM-LEVEL DEPENDENCY TO A PM-LEVEL
DEPENDENCY VIA A PHYSICAL AND VIRTUAL RESOURCE MAPPING

¢

GENERATE A GROUP OF EVENT SETS; AND GENERATE A PRIORITIZED
EVENT LIST BY PRIORITIZING THE GROUP OF EVENT SETS

| 240

US 9,183,033 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Khanna et al., “Application Performance Management in Virtualized
Server Environments”, In proceedings of the 10th IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2006), p.
373-381, 2006.

Wang et al., “AppRAISE: application-level performance manage-
ment in virtualized server environments”, In IEEE Transaction on
Network and Service Management, vol. 6, No. 4, p. 240-254, Dec.
2009.

Kim et al., “An Alarm Correlation Algorithm for Network Manage-
ment Based on Root Cause Analysis”, In Proceedings on the 13th
International Conference on Advanced Communication Technology
(ICACT 2011), p. 1233-1238, 2011.

Apte et al,, “Look Who’s Talking: Discovering Dependencies
between Virtual Machines Using CPU Utilization”, In proceedings of
the 2nd USENIX conference on Hot topics in cloud computing
(HotCloud’10), p. 1-7, 2010.

Chiueh et al., “An Agentless Approach to Application-level Depen-
dency Map Discovery Using Virtual Machine Inspection”, Pending
Patent, 2012.

Chen et al., “Automating Network Application Dependency Discov-
ery: Experiences, Limitations, and New Solutions”, Proceedings of
the 8th USENIX conference on Operating systems design and imple-
mentation, pp. 117-130, 2008, Abstract; Chapter-1to Chapter 7.
Taiwan Patent Office, Office Action, Patent Application Serial No.
TW101150186, Nov. 24, 2014, Taiwan.

* cited by examiner

US 9,183,033 B2

Sheet 1 of 13

Nov. 10, 2015

U.S. Patent

(LIV IORID) 1 'O1A

($€:0°0€:0)
.Hoaom ommo_ﬁmg

A

(0€:0°20:0)
.Hoaom ommo_ﬁmg

i

(85:€°6€:0)
€ 19AI9G uonyedrddy

($€:0°0€:0)

7 19A12G uonedrddy

(0€:0°20:0)

[JoA19G uonesrddy

(85:€°20:0)
Jaoue[eq peo]

(20:0°10:0)
.Hoaom mZQ

<

(85:€°10:0)
.Hoaom o_o\(/

Koudye|

(10:0°00:0)
.Hoaom mZQ

e

(00:+°00:0)
Jasmoig

US 9,183,033 B2

Sheet 2 of 13

Nov. 10, 2015

U.S. Patent

¢ O

aN+d

0vT |

SLAS LNHAH 40 dNOYD HHL ONIZILIIOI|dd A9 LSI'T LNJAH
ddZILIIOIdd V ALVIANTD ANV -SLAS INFAT 40 dNO¥YD V ALVIANTD

1

0€T |

ONIddVIN 4OdNOSHY TVILLIIA ANV TVOISAHd V VIA ADNJANAddd
THAATINd V OL ADNAANAdIA THATT-WA dHL JHISNVIL

1

02z |

AONAANAdAA THATTINA V
OL A TVINONV HLIM ADOTOdOL THAH T-NOILLVOI'IddV dHL dH44SNVYL

1

01z |

A TVINONY HLIM ADOTOdOL
THAAT-NOILVOI'TddV NV ALVIANAD ANV ‘SIWA 0N d0 ANO NI
SHIDNAANAdAA THATT-NOILVII'IddV ANId OL NOILLODALHd A'TVINONY
ANV AYHAODSIA ADNHANAJAA THAHT-NOLLVII'IddV NV A'1ddV

US 9,183,033 B2

Sheet 3 of 13

Nov. 10, 2015

U.S. Patent

Juade

Hyonmg

Jua3de Juode Juade Juode
—_—
Cownjop INA ‘WA
< =
Toumjop
— = tId Sl 'Wa J—~
_ 1 53e101g K He
Uoo mH
"dwoy NdD
A ATNAONW DNITIOLINON
0r¢
00€ 1 YAATAS WOdAdd

US 9,183,033 B2

Sheet 4 of 13

Nov. 10, 2015

U.S. Patent

¢
I9A19G uonedrddy

[4
I9A19G uonedrddy

PO

!
I9A19G uonedrddy

A

-
I90UR[RY PRO] ;l JOAIOS PIM

IosmoIg

Vﬁ IOATOS SN
.

!

JOAISS aseqeie

US 9,183,033 B2

Sheet 5 0of 13

Nov. 10, 2015

U.S. Patent

SO

r——————————
| *WA 4_

e A

_ 13

papguonedriddy &, [T < T [3 ——

_ \ | _\ WA

I - | ﬁ

_ S

_ 10A19§ uoneorddy _ § I9AISS POM

\

.- |
r—————————— |

| | \
L I | /|
| ﬁ I2A19S uonedrddy _ | "ﬁ or1o SN _//,
i L
e L

| Vﬁ JOAIIS IseqEIR(] _

! L _

- - - _

| Pa10319(Q
N Aewiouy

U.S. Patent

Sheet 6 of 13

@@

@

Nov. 10, 2015
<
=
>
o
- =
>
[\
=
>
2—1
>

“

US 9,183,033 B2

FIG. 6

US 9,183,033 B2

Sheet 7 of 13

Nov. 10, 2015

U.S. Patent

F—————————————————

£a8e101g [ROISAY(

_
_
| Toumop
|

US 9,183,033 B2

Sheet 8 of 13

Nov. 10, 2015

U.S. Patent

£58e101g [ROISAY(

8 "OId

Cage101g 1ROISAY] I a3e101g TROISAYY

Couryoay [eo1SAyg Tourgoopy 1eo1sAyg

/ \

K

Couryoa [eo1SAyg

) AN

008

US 9,183,033 B2

Sheet 9 of 13

Nov. 10, 2015

U.S. Patent

4 red ¥ gV A o J 308 Ju0A N
Jyonmg Jo sjuaag HNd Jo sluoag Vyoumg jo sjuoag
dyonmg jo sjuaayg VY IAd Jo sjuaaq

\ /

qind Jyonmg Hyonmg Vyoyms Vind

0r6

US 9,183,033 B2

Sheet 10 of 13

Nov. 10, 2015

U.S. Patent

01 “OIA

CINd 241 JO 19§ 1uaAT

wedtgd

redgg”

£ INd o Jo 198 JuoAg

ared g
“INd 243 JO 19§ JuaAayg

ared Sg

TN 2w Jo 10§ juang

ared T gd™
TIAld oy Jo 198 Juoag

£a8e101g ROISAY]

Ca3e101G [ROISAY]

CouryooN [eo1SAYd

0001

153e101Q [BOISAYQ

\

/

Couryoa [BoISAYJ

/

o

Tauryoayy eotsAyg !

D 008

US 9,183,033 B2

Sheet 11 of 13

Nov. 10, 2015

U.S. Patent

I1"OId

2407 SPAAIXI OUIQ JO eI JOIID :BSIA “TINd :991A9(‘g 1UdAY

040T SPR29X3 ()] MO JO 181 JOLID :BSIA ‘UOIMS :I01A(] ‘D) JUIAH
PR} O MSIA :SSIN ‘[98.I0IS :921Ad(J “J JUAAY

D09 SPa20x2 aameradurd) NdD 8SIN “TIAd 29149 D) AT

04,8 SPAAXI *S[UN NdD) :FSN “VUIIMS :9JTAQ(] VY JUIAH

_ aedfgg redCgq
CINd U1 JO 198 1UdAT £ INd 2y Jo 198 Jueaq

ared S]g ared S NG medlgq™
CINd o3 JO 19§ A VA 211 J0 198 Ju2ag VN 9y o 308 Juoag

OITI

/l,)

0001

US 9,183,033 B2

Sheet 12 of 13

Nov. 10, 2015

U.S. Patent

74!

1O

ISI] JUDAD
paznuoud v

\ J[npout
uonezNLIoLd| 39S JUIAH - 3urojiuow Ay}
JUSA] o Jo dnoin) ay3 3uneIoudr) |~ AQq PaTBIoUSS JUSAY
’ Kouapuada(g A
0scl [0AS-Nd
(19AS] TN 01 WA WoL]) | _
0€CTL 7| ampedo1d uondensqy
Koudpuada(A
PTNA Butddew WA/
(JeA9] INA 01 uonedrddy | Jo uoneuiojut
0TT1 7 |wox) 9mMpado1d uonoensqy| o) surdaay
K[ewoue Joy A1oysodar ay .
ypm A3o10doy Sax
[9Ad[-uonedrddy

EIREIEL]
Aewoue ON

01er |

UoI130919(] A[ewiouy’
[2A9[-uonyedrddy

A

anss|
QourwIoLIR uonedrddy|

US 9,183,033 B2

Sheet 13 of 13

Nov. 10, 2015

U.S. Patent

A

IST] JUAD
pazpLoLg

IST] JUQAD PIAZNLIOLIJ
HTNAON
NOILVZILTdOIdd
aNyv
NOILVIINTD LNJAH

J—

¢l O

Kouapuadap
[9A9[-INd

/

0¢€l

\

00¢T

Kouapuadap [9AJ[-INd

HTNAON
NOILOVYHLSIdV

/
0zTEl

ATewioue y3im A3ojodoy
[2A9[-uonyeorddy

- Aewoue TAAOW NOILLOA.LAd]
s %WOMOQOQ A TVINONY
[oAa]-uoneorddy| TAAHT-NOILLVOI'lIdd V]
or¢l

US 9,183,033 B2

1
METHOD AND SYSTEM FOR ANALYZING
ROOT CAUSES OF RELATING
PERFORMANCE ISSUES AMONG VIRTUAL
MACHINES TO PHYSICAL MACHINES

TECHNICAL FIELD

The disclosure generally relates to a method and system for
analyzing root causes of relating performance issues among
virtual machines to physical machines.

BACKGROUND

Rapid advances in network communications and hard-
ware/software techniques bring huge e-services to enrich
daily life of human beings. As the growing and progressing of
virtualization techniques, these services may be moved to run
on virtual machines. Some techniques may offer new eco-
nomic models providing such as computing power, data
access, and network transformation as utilities. For example,
one model is also known as Infrastructure as a Service (IAAS)
in the area of could computation. As an IAAS provider own-
ing a physical data center, monitoring the whole physical data
center to know the conditions of the facilities, such as the
cooling system and the power supply/UPS system, or the
usage of the physical devices is absolutely needed and many
existing monitoring system, e.g. zenoss and WhatsUp, may
support these requirements.

One of current technologies discloses an LWT method
integrated into a Xen hypervisor running on a small-scale data
center to identify inter-VM dependencies. Another technol-
ogy introduces the concept of server consolidation using vir-
tualization. For meeting a service level agreement (SLA), the
technology is based on an algorithm for migrating virtual
machines within a group of physical machines when perfor-
mance problems are detected. Yet another technology pro-
vides a system for application performance control and
dynamic resource allocation in virtualization environments.
This technology predicts the resource demand to meet appli-
cation-level performance requirements. Yet another technol-
ogy disclose an alarm correlation algorithm based on the
TCP/IP mode, and the alarm correlation (or event correlation)
is a key function in network management systems. This tech-
nology classifies the alarms according to an identifier of each
TCP/IP Protocol type, e.g. port number in TCP, and then
clusters the alarms to find the root cause alarm.

There exists some works on root cause analysis of appli-
cation performance problems. One of these technologies
mentioned that monitoring transactions with multiple com-
ponents may gather component level information. And, for
transactions exceeding a threshold, the data collected from
the individual components can be analyzed to find the poten-
tial root cause of the performance issue. Another technology
disclosed a monitoring system including agent components
that monitor and report performance parameters, e.g.
response time, and a web-based server may be used to display
the collected data. Also, a root cause analysis system applied
statistical algorithms to detect performance degradations in
specific parameters and some pre-defined parameter depen-
dency rules are used to correlate the performance degrada-
tions to the root causes of the problems. Yet in another tech-
nology, the performance metrics gathered from agents for
transactions are used to compare with baseline metrics to
automatically detect anomalies, and a monitoring system
reports the components of the transactions that out-of accept-
able ranges as the root causes.

10

15

20

25

30

35

40

45

50

55

60

65

2

One technology disclose a central server named Applica-
tion-level Dependency Discovery and Maintenance and a
system module integrated within hypervisor(s) are used to
collect the application trajectory in thread granularity and the
application-level dependency map for a specific application.
An example of the application trajectory with a root node of
browser, a start time, and an end time is shown in FIG. 1.
Wherein the application trajectory 100 in the FIG. 1 starts
from browser 1, and if an application A has data exchange
with another application B and the application A is a client
side of the A to B connection, then application A depends on
application B. For example, if load balancer (application A)
has data exchange with application server 2 (application B),
then load balancer depends on application server 2. In other
words, an application trajectory may be equivalent to a static
view of trajectory. Information of virtual machines or physi-
cal machines may be added onto an application trajectory to
help understanding of application deployment.

The above works or technologies either only concern about
the usage and workload of physical machines and ignore
hardware issues for virtual machine resource allocation or
concern only the hardware issues or performance issues on
physical machines but not be integrated with the concept of
virtualization. However, the existing monitoring system or
the network monitoring system (NMS) may not diagnose the
performance issues among virtual machines running on the
physical data center, and the root causes of these performance
issues may come from the hardware issues of the physical
data center, such as buggy disks or overloading switches and
so on. Therefore, it is important to solve the problems of
relating performance issues among virtual machines to physi-
cal machines.

SUMMARY

The exemplary embodiments of the present disclosure may
provide a method and system for analyzing root causes of
relating performance issues among virtual machines to physi-
cal machines.

One exemplary embodiment relates to a method adapted to
a physical data center, for analyzing root causes of relating
performance issues among virtual machines (VMs) to physi-
cal machines (PMs). The method comprises: applying an
application-level dependency discovery and anomaly detec-
tion to find application-level dependencies in one or more
VMs running on a plurality of PMs in the physical data center,
and generate an application-level topology with anomaly;
transferring the application-level topology with anomaly to a
VM-level dependency; transferring the VM-level depen-
dency to a PM-level dependency via a physical and virtual
resource mapping, and generating a group of event sets; and
generating a prioritized event list by prioritizing the group of
event sets.

Another exemplary embodiment relates to a system for
analyzing root causes of relating performance issues among
virtual machines (VMs) to physical machines (PMs). The
system may be adapted to a physical data center, and may
comprise an application-level anomaly detection module, an
abstraction module, and an event generation and prioritiza-
tion module. The application-level anomaly detection mod-
ule is configured to find an application-level dependency in
one or more VMs running on a plurality of PMs in the physi-
cal data center, and generate an application-level topology
with anomaly. The abstraction module is configured to
abstract the application-level topology with anomaly to a
VM-level dependency, and then transfer the VM-level depen-
dency to a PM-level dependency. The event generation and

US 9,183,033 B2

3

prioritization module is configured to get a PM communica-
tion topology, generate a group of event sets by using the PM
communication topology, and produce a prioritized event list
by prioritizing the group of event sets.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of an application trajectory.

FIG. 2 shows an operation flow of a method for analyzing
root causes of relating performance issues among virtual
machines to physical machines, according to an exemplary
embodiment.

FIG. 3 shows a schematic view of agents installed at physi-
caldevices for receiving/responding PDCM requests, accord-
ing to an exemplary embodiment.

FIG. 4 shows a schematic view of an exemplary application
dependency topology in a virtual data center, according to an
exemplary embodiment.

FIG. 5 shows a schematic view illustrating virtual
machines the applications are running on and anomalies
detected in the application-level dependency map of FIG. 4,
according to an exemplary embodiment.

FIG. 6 shows a schematic view illustrating the communi-
cations among the virtual machines and the virtual volumes
for FIG. 5, according to an exemplary embodiment.

FIG. 7 shows a schematic view illustrating the abstraction
from the virtual machine level of FIG. 6 to the physical
machine level, according to an exemplary embodiment.

FIG. 8 shows a schematic view illustrating the communi-
cations among the physical machines and the physical net-
work storages in the physical data center, according to an
exemplary embodiment.

FIG. 9 shows an exemplary routing path between two
exemplary physical machines having communications to
each other, and the gotten corresponding events, according to
an exemplary embodiment.

FIG. 10 shows an exemplary group of event sets for the
physical machine communication topology of FIG. 8, accord-
ing to an exemplary embodiment.

FIG. 11 shows an exemplary prioritized event list from the
group of event sets of FIG. 10, according to an exemplary
embodiment.

FIG. 12 shows an operation flow of event prioritization for
root cause analysis, according to an exemplary embodiment.

FIG. 13 shows a system for analyzing root causes of relat-
ing performance issues among virtual machines to physical
machines, according to an exemplary embodiment.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

Below, exemplary embodiments will be described in detail
with reference to accompanying drawings so as to be easily
realized by a person having ordinary knowledge in the art.
The inventive concept may be embodied in various forms
without being limited to the exemplary embodiments set forth
herein. Descriptions of well-known parts are omitted for clar-
ity, and like reference numerals refer to like elements
throughout.

The exemplary embodiments disclose a technique for ana-
lyzing root causes of relating performance issues among vir-
tual machines to physical machines. In the disclosure, an
Infrastructure as a Service (IAAS) is used, wherein one or
more virtual machines may run on at least one data center
equipping with physical devices as physical machines, net-
work storages and switches, and the data center may refer to
a physical data center. Consider an exemplary scenario as

10

15

20

25

30

35

40

45

50

55

60

65

4

follows. A virtual data center operator, who is a customer
renting resources from the physical data center operator to
create his/her own virtual data center, discovers application
performance issues in his/her virtual data center. An applica-
tion performance issue may be, but not limited to, gotten a
very long response time from a web site. In the scenario, the
exemplary embodiments may monitor the physical devices in
the physical data center, in which a huge of virtual machines
running on, and figure out the root causes of the performance
issues among virtual machines in an identical virtual data
center by relating the performance issues to the hardware
issues.

According to the exemplary embodiments, relating the
performance issues among virtual machines running on one
or more physical machines to the hardware issues of the
physical machines may involve the components such as
application-level dependency discovery and anomaly detec-
tion, physical and virtual resource mapping, hardware moni-
toring for event generation and consolidation, event prioriti-
zation flowchart for root cause analysis and so on. In other
words, the exemplary embodiments transfer the performance
issues on the virtual machines to the hardware issues of the
physical machines for helping to figure out and solve the root
causes, and the root cause analysis technique may be accom-
plished by using application-level dependencies, physical/
virtual resource mapping, and network routing information.

FIG. 2 shows an operation flow of a method for analyzing
root causes of relating performance issues among virtual
machines to physical machines, according to an exemplary
embodiment. Referring to FIG. 2, the method may applying
an application-level dependency discovery and anomaly
detection to find application-level dependencies in one or
more virtual machines (VMs) (step 210), and generate an
application-level topology with anomaly, then transfer the
application-level topology with anomaly to a VM-level
dependency (step 220). The method then performs a physical
and virtual resource mapping to transfer the VM-level depen-
dency to a physical machine level dependency and eventually
generates a group of event sets (step 230). The method may
further generate a prioritized event list by prioritizing the
group of event sets (step 240). The operation flow of the
method shown in FIG. 2 may recommend an administrator of
a physical data center the root causes of the performances
issues among customers’ virtual machines. The followings
further describe the detailed for each of the steps involved.

In step 210, a central server named ADDM (Application-
level Dependency Discovery and Maintenance) and a system
module integrated within a hypervisor may be used to collect
the application trajectory in thread granularity and the appli-
cation-level dependency map for a specific application. An
example of the application trajectory with a root node of
browser, start time equal to 0:00, and end time equal to 4:00
may be shown in FIG. 1. Information of virtual machine or
physical machine may be added onto an application trajectory
to help understanding of application deployment. For
example in the disclosed embodiments, applying a backward
trace, the delay time or latency related to each hop may be
obtained. Under a normal environment, it may collect the start
and end time interval for a whole application many times to
find an average latency related to each hop, which refers to a
training phase. In other words, an average latency related to
each hop on the application trajectory may be found at a
training phase. By adding a corresponding delta time period
as a tolerance to the average latency related to each hop (or
justusing the average latency related to each hop), a baseline
latency of each hop may be generated. When the ADDM
server is requested to collect the current response time for the

US 9,183,033 B2

5

whole specific application, the ADDM server may also check
to determine whether the average latency related to the each
hop exceeds its corresponding baseline latency. These hops
with their latency exceeding their corresponding baseline
latency are detected as an anomaly.

In step 220, physical resource usage of virtual machines
may involve computing power, data access, and network
transmission. In terms of computing power, the disclosed
embodiments may use a repository to keep the information
about which physical machine a specific virtual machine is
running on. While creating a virtual machine or after a virtual
machine being migrated, which physical machine the virtual
machine is running on may be known no matter what kinds of
virtual machine creation/migration algorithms (such as
resource allocation algorithms) are used. In terms of data
access, the disclosed embodiments may use a repository to
keep the information about which virtual machine a virtual
volume is attached to, and a repository to keep the informa-
tion about which network storage devices a virtual volume is
related to. In other words, the information about which virtual
volumes are used by a specific virtual machine and these
volumes are located at which network storages may also be
kept in the repository while creating the virtual volumes and
then attaching them to the specific virtual machine. Again,
keeping this information in the repository may be combined
with any of the virtualization algorithms.

On the other hand, in terms of network transmission, the
disclosed embodiments may use at least one repository to
keep the information about how data of a virtual machine are
transferred to the Internet or how data are transferred between
two virtual machines in the identical virtual data center. To
know the answer, the disclosed embodiments keep the infor-
mation of a routing path between each pair of a plurality of
physical machines, and the information of at least one routing
path between each of the plurality of physical machines and
each of one or more physical devices. The information may be
kept in at least one repository. A physical device may be, but
not limited to a gateway or a network device such as a switch,
aphysical storage and so on. The routing path between a pair
of physical machines means a physical machine sending
packages/frames to the other physical device follows the path.
As which physical machines the virtual machines run on are
known, therefore, how data are transferred between two vir-
tual machines can be known.

As shown in FIG. 3, an agent may be installed in each
monitored physical device for receiving/responding physical
data center management (PDCM) requests, according to an
exemplary embodiment. The agent may collect the physical
device information and keeps the information in a corre-
sponding repository. The physical device information may
be, but not limited to, manufactory, CPU/memory utilization,
free partition space, bit/error rates of interfaces, and other
information. The agent may get the physical information by
IPMI, SMART, or even parsing syslog and results of system
commands such as “top” or “xentop.”” When the agent
receives a request from a monitoring module 310 of a server
suchas a PDCM server 300, it may send corresponding values
back to the PDCM server 300 to get the physical device
information at the PDCM server. An administrator of a physi-
cal data center (PDC) may set a probing period, e.g. 350
seconds, to send requests to each physical device in the PDC
and gets alast value corresponding to the each physical device
(for example a CPU temperature 50° C. at a physical machine
PM,) every probing period (e.g. 350 seconds).

In step 230, it may also set distinct thresholds for distinct
last values corresponding to the distinct physical devices.
When the obtained values exceed their corresponding given

10

15

20

25

30

35

40

45

50

55

60

65

6

thresholds, the server such as a PDCM server may generate
corresponding events for corresponding physical devices to
notify the physical data center. Besides, the PING requests
may be used to check whether a physical device is reachable.
The monitoring module had been commercialized such as
Zenoss or WhatsUp. Some of the generated events may have
correlations, wherein a group of events may have an identical
root cause. The disclosed exemplary embodiments may apply
the existing algorithms to consolidate the group of events
after the correlated events are generated.

In step 240, the group of event sets may be prioritized
according to an event prioritization algorithm and will be
described later below. In the prioritized event list, the events
with a former order may have a higher possibility of being the
root causes of the performance issues and they should be
solved faster than the events with a later order. Combining the
above components involved in the steps 210~240, the follow-
ings illustrate an overall operation flow for an exemplary
application to analyze the root causes of the performance
issues among virtual machines in an identical virtual data
center by relating the performance issues to the hardware
issues.

According to step 210, an ADDM server may be used for
being requested to get the current latency of applications in a
virtual data center and detect anomaly. The application
dependency topology of the exemplary applications in the
virtual data center is as shown in FIG. 4. From the application
dependency topology of FIG. 4, the ADDM server also fig-
ures out the virtual machines which the applications are run-
ning on and checks to determine whether the obtained current
latency for each hop among the applications exceeds its cor-
responding baseline. FIG. 5 shows a schematic view illustrat-
ing the virtual machines the applications are running on and
anomalies detected in the application-level dependency map,
according to an exemplary embodiment. For example, an
anomaly denoted by a dotted arrow is detected for the hop
from browser in virtual machine VM, to DNS server in virtual
machine VM, and there are four anomalies detected in the
application-level dependency map. The information on the
corresponding virtual machines denoted by VM, VM, VM,
and VM, for the four anomalies may be sent to a PDCM
server.

According to step 220, used virtual volumes for VMs may
be obtained from the repository and the application level to
VM level is abstracted. Therefore, the attached virtual vol-
umes of each virtual machine of VM, VM, VM; and VM,,,
are found, as shown in FIG. 6, and the view point of applica-
tion level is abstracted to the view point of virtual machine
level in the PDCM server. In addition, any two virtual
machines, say VM, and VM, have communications to each
other means that the applications running on them have com-
munications to each other. For example, VM, and VM; in
FIG. 6 have communications to each other. The reason is Web
Server on VM, has communications to Load Balancer on
VM;. Also, these two virtual machines are recognized as
having communications to each other, thereby there existing
a link between VM, and VM3, as shown in FIG. 6. A link
between a virtual machine and a volume indicates the volume
is attached to the virtual machine. For example, the volume,
is attached to virtual machine VM,.

According to step 230, information on the physical
machines and physical devices such as storage devices may
be obtained from the repository, and the virtual machine level
is abstracted to a physical machine level. Therefore, the view
point of virtual machine level in F1G. 6 is further abstracted to
the view point of physical machine level. In other words,
which physical machines or physical storages the virtual

US 9,183,033 B2

7

machines or the virtual volumes are running on or kept at can
be found from at least one repository. FIG. 7 shows a sche-
matic view illustrating the abstraction from the virtual
machine level of FIG. 6 to the physical machine level, accord-
ing to an exemplary embodiment. Any two physical
machines, say PM , and PMj, have communications to each
other means that the virtual machines running on them have
communications to each other. For example, PM, and PM; in
FIG. 7 have communications to each other because VM, in
PM, and VM; in PM; have communications to each other. A
physical machine and a physical storage have communica-
tions to each other means that the virtual machines running on
the physical machine and the volume attached to the physical
storage have communications to each other. For example,
VM; in PM; and volume; in physical storage; have commu-
nications to each other.

After the abstraction procedure of FIG. 7, the original
application-level dependency in a virtual data center as in
FIG. 5 is transformed into the physical machine level depen-
dency in a physical data center. FIG. 8 shows a schematic
view illustrating the communications among the physical
machines and the physical network storages in the physical
data center, according to an exemplary embodiment.
Wherein, in the PM communication topology 800, a link
between two physical machines means that the two physical
machines have communications to each other, and a link
between one physical machine and one physical storage
means that the physical machine and the physical storage
have communications to each other.

As mentioned earlier, the disclosed embodiments may use
at least one repository to keep the information keep the infor-
mation of a routing path between each pair of a plurality of
physical machines, and the information of at least one routing
path between each of the plurality of physical machines and
each of one or more physical devices. According, for any two
physical machines recognized as having communications to
each other, the disclosed exemplary embodiments may get the
routing path (i.e. data transmission path) between the two
physical machines from the repository, and get the corre-
sponding events. For example, FIG. 9 shows an exemplary
routing path 910 between two exemplary physical machines
(say PM, and PMj) having communications to each other,
and the gotten corresponding events 920, according to an
exemplary embodiment. As shown in FIG. 9, the routing path
910 from PM, to PMj goes through Switch ,, Switchg, and
then Switch ... After collecting all of the current events (which
have been consolidated) related to the physical devices
involved in the data transmission path, an event set of the
PM, PMj pairis formed. The event set of the PM, PMj; pair
includes events of PM ,, events of Switch ,, events of Switchy,
events of Switch, and events of PM.

Accordingly, for any two physical machines recognized as
having communications to each other, the disclosed exem-
plary may get a corresponding event set. Therefore, a group of
event sets may be formed by using the physical machine
communication topology. FIG. 10 shows an exemplary group
of event sets 1000 for the physical machine communication
topology 800 of FIG. 8, according to an exemplary embodi-
ment. In FIG. 10, the group of event sets 1000 may include an
event set of the PM, pair, an event set of the PM, PM, pair,
aneventsetofthe PM, PM; pair, aneventset ofthe PM; PS,
pair, and an event set of the PM, PS; pair, wherein PM
represents physical machine and PS represents physical stor-
age. As may be seen, number of event sets in the group of
event sets equals to number of links in the physical machine
communication topology. In other words, the PM-level

10

15

20

25

30

35

40

45

50

55

60

8

dependency is a PM communication topology, and the group
of'event sets may be generated by using the PM communica-
tion topology.

According to step 240, a group of event sets may further be
prioritized according to an event prioritization algorithm.
According to one exemplary embodiment of the event priori-
tization algorithm, for an event in the group of event sets,
when it is contained in two event sets, a support count is
defined for this event. The support count for an event may be
defined by the number of event sets that the event appears in.
Therefore, the support count of each event in the group of
event sets may be calculated and then, all the corresponding
events are sorted into a decreasing order of the support count.
When there are two events with the identical support counts,
it may sort them according to the event severity. An exem-
plary prioritized event list 1100 is shown as in FIG. 11, which
may be further sent to the physical data center. In other words,
steps 210-240 performed by the application-level anomaly
detection module, the abstraction module, and the event gen-
eration and prioritization module may use an ADDM server (a
first server) and a system module integrated within a hyper-
visor, and a PDCM server (a second server), and cooperate
with at least one repository.

As shown in FIG. 11, each event in the prioritized event list
1100 may associate a device such as a physical machine or a
physical device, and has an associated message correspond-
ing to a hardware issue to the device. As mentioned earlier, an
event with a former order in the list may have a higher prob-
ability of being the root causes of a specific performance
issue. And it is better to solve the specific performance issue
ofthe event earlier than that of the event with a later order. For
example, an event A associated a device named switch , has a
message of CPU utilization exceeding 85%, and the perfor-
mance issue of CPU utilization exceeding 85% has a highest
probability of being the root causes.

The above principle for prioritizing the group of event sets
1000 is that a common hardware issues, for example, the
overloading of a switch, may be the bottleneck of the corre-
sponding performance issues among virtual machines in an
identical virtual data center and solving them with the higher
priorities may speed up enhancing the performance. Count-
ing the exceeding times of events in the group of event set is
the basic idea of prioritization. The algorithm for prioritizing
a group of event sets may be varied. For example, it may take
into account the event severity and the device type to a spe-
cific weight (rather than 1) for each kind of events and priori-
tize the events by using weighted support counts.

Therefore, according to the exemplary embodiments, an
operation flow of event prioritization for root cause analysis
may be summarized as in FIG. 12, which may include an
application-level anomaly detection (step 1210) to get an
application-level topology with anomaly, a first abstraction
procedure (step 1220) (from application level to virtual
machine level (VM-level) to get a VM-level dependency, a
second abstraction procedure (step 1230) (from VM-level to
PM-level) to get a PM-level dependency, generating a group
of event sets (step 1240) from the PM-level dependency, and
an event prioritization (step 1250) to produce a prioritized
event list. Wherein, at least one repository may be used for
keeping the information of PM/VM mapping during the two
abstraction procedures and generating the group of event sets.
A monitoring module may be used for generating each event
of the group of event sets.

The disclosed exemplary embodiments of for root cause
analysis may be adapted to a physical data center (PDC)
having physical machines, one or more network storages, and
one or more network devices. A physical data center manage-

US 9,183,033 B2

9

ment module may be used to continuously monitor the physi-
cal machines, the network storages, and the network devices,
and generate events for the hardware components to analyze
the performance issues corresponding to the hardware com-
ponents. At least one repository may be used to keep the
information that a virtual machine is running on which physi-
cal machine, a virtual volume is attached to which virtual
machine, a virtual volume is related to which network storage
(s), and the routing paths between any of two physical
devices.

Accordingly, one exemplary embodiment of a system for
analyzing root causes of relating performance issues among
virtual machines to physical machines may be shown as in
FIG. 13. Referring to FIG. 13, the system 1300 may be
adapted to a physical data center, and may comprise an appli-
cation-level anomaly detection module 1310, an abstraction
module 1320, and an event generation and prioritization mod-
ule 1330. The application-level anomaly detection module
1310 is configured to find an application-level dependency in
one or more virtual machines (VMs) running on a plurality of
physical machines (PMs) in the physical data center, and
generate an application-level topology with anomaly. The
abstraction module 1320 is configured to abstract the appli-
cation-level topology with anomaly to a VM-level depen-
dency, and then transfer the VM-level dependency to a PM-
level dependency. The event generation and prioritization
module 1330 is configured to get a PM communication topol-
ogy, generate a group of event sets by using the PM commu-
nication topology, and produce a prioritized event list by
prioritizing the group of event sets.

The system 1300 may be integrated in a physical data
center management system module to continuously monitor
the plurality of PMs, and one or more physical devices in the
physical data center. A physical device may be, but not limited
to a gateway or a network device such as a switch, a physical
storage and so on. The system 1300 may further include at
least one repository to keep the information of a routing path
between each pair of the plurality of physical machines, and
the information of at least one routing path between each of
the plurality of physical machines and each ofthe one or more
physical devices. The abstraction module 1320 may get infor-
mation of used virtual volumes for VMs from the repository
for abstracting the application level to the VM-level, and may
get information of the plurality of PMs and one or more
physical storages from the repository, for abstracting the VM
level dependency to the PM level dependency. The event
generation and prioritization module may get information of
a routing path between each pair of PMs of the plurality of
PMs from the repository, for generating a plurality of events
corresponding to a plurality of physical devices over the
routing path. Exemplary algorithm for prioritizing the group
of event sets has been described earlier, and omitted here.

In summary, the exemplary embodiments provide a tech-
nique for analyzing root causes, which is accomplished by
using application-level dependencies, physical/virtual
resource mapping, and network routing information. The
technique applies an application-level anomaly detection to
get an application-level topology with anomaly, performs an
abstraction procedure (from application level to a VM-level)
to get a VM-level dependency, and an abstraction procedure
(from the VM-level to a PM-level) to get a PM communica-
tion topology, and then generates a group of event sets from
the PM communication topology. And, a prioritized event list
is formed by performing a prioritization algorithm.

It will be apparent to those skilled in the art that various
modifications and variations can be made to the disclosed
embodiments. It is intended that the specification and

10

15

20

25

30

35

40

45

50

55

60

10

examples be considered as exemplary only, with a true scope
of'the disclosure being indicated by the following claims and
their equivalents.

What is claimed is:

1. A method for analyzing root causes of relating perfor-
mance issues among virtual machines (VMs) to physical
machines (PMs), in a physical data center configured to per-
form the method comprising:

providing communications between at least two VMs such

that applications running on the at least two VMs com-
municate with each other;

applying an application-level dependency discovery and

anomaly detection to find an application-level depen-
dency in one or more VMs running on a plurality of PMs
in the physical data center, and generate an application-
level topology with anomaly;

transferring the application-level topology with anomaly

to a VM-level dependency;

transferring the VM-level dependency to a PM-level

dependency via a physical and virtual resource mapping,
and generating a group of event sets; and

generating a prioritized event list by prioritizing the group

of event sets,

wherein a number of event sets in the group of event sets is

equal to a number of links in the PM-level dependency.

2. The method as claimed in claim 1, wherein the applica-
tion-level dependency discovery and anomaly detection fur-
ther includes:

finding an average latency related to each of a plurality of

hops on an application trajectory at a training phase; and
adding a corresponding delta time period as a tolerance to
the average latency related to the each hop, and gener-
ating a corresponding baseline latency of the each hop.

3. The method as claimed in claim 2, wherein whether the
average latency related to the each hop of the plurality of hops
exceeds its corresponding baseline latency is further deter-
mined, and these hops with their latency exceeding their
corresponding baseline latency are detected as an anomaly.

4. The method as claimed in claim 1, wherein a repository
is used to keep at least one information on a physical resource
usage of one or more virtual machines.

5. The method as claimed in claim 1, wherein said method
further uses at least one repository to keep a first information
of a routing path between each pair of a plurality of physical
machines, and a second information of at least one routing
path between each of the plurality of physical machines and
each of at least one physical device.

6. The method as claimed in claim 1, wherein each event in
the prioritized event list associates a device and has an asso-
ciated message corresponding to a hardware issue to the
device.

7. The method as claimed in claim 6, wherein the device
associated by the each event is one of a physical machine and
a physical device, and said physical device is one of physical
machines, network storages, and network devices.

8. The method as claimed in claim 1, wherein said physical
and virtual resource mapping further includes:

obtaining an information on at least one physical machine

and at least one physical device from at least one reposi-
tory and abstracting the VM-level dependency to the
PM-level dependency.

9. The method as claimed in claim 1, wherein generating
the group of event sets further includes:

for each pair of PMs of a plurality of PMs, getting a routing

path between the pair of PMs and a first corresponding
event set of the pair of PMs; and

US 9,183,033 B2

11

for each pair of a PM of the plurality of PMs and a physical
storage (PS) of at least one physical storage, getting a
second corresponding event set of the PM and the PS.

10. The method as claimed in claim 1, wherein said PM-
level dependency is a PM communication topology, and the
group of event sets is generated by using the PM communi-
cation topology.

11. A system for analyzing root causes of relating perfor-
mance issues among virtual machines (VMs) to physical
machines (PMs), configured in physical data center, and com-
prising:

a processor;

afirst server and a system module that finds an application-
level dependency in one or more VMs running on a
plurality of PMs in the physical data center, and gener-
ates an application-level topology with anomaly,

wherein said first server at least includes an application-
level anomaly detection module, and said system mod-
ule is integrated within a hypervisor;

a link provided to communicate between at least two VMs
such that applications running on the at least two VMs
communicate with each other, and

a second server that includes at least an abstraction module
and an event generation and prioritization module,

wherein said abstraction module abstracts the application-
level topology with anomaly to a VM-level dependency,
and then transfers the VM-level dependency to a PM-
level dependency, and said event generation and priori-
tization module gets a PM communication topology,
generates a group of event sets by using the PM com-
munication topology, and produces a prioritized event
list by prioritizing the group of event sets,

wherein a number of event sets in the group of event sets is
equal to a number of links in the PM communication

topology.

10

15

20

25

30

12

12.The system as claimed in claim 11, wherein said system
is integrated in a physical data center management system
module to continuously monitor the plurality of PMs, and one
or more physical devices in the physical data center.

13. The system as claimed in claim 11, wherein the system
further includes at least one repository to keep a first infor-
mation of a routing path between each pair of the plurality of
PMs, and a second information of at least one routing path
between each of the plurality of PMs and each of one or more
physical devices.

14. The system as claimed in claim 12, wherein each event
in the prioritized event list associates a physical device of the
one or more physical devices in the physical data center, and
has an associated message corresponding to a hardware issue
to the physical device.

15. The system as claimed in claim 11, wherein the abstrac-
tion module gets an information of one or more used virtual
volumes for the one or more VMs from at least one repository,
for abstracting the application-level topology with anomaly
to the VM-level dependency.

16. The system as claimed in claim 11, wherein the abstrac-
tion module gets an information of the plurality of PMs and
one or more physical storages from at least one repository, for
abstracting the VM-level dependency to the PM-level depen-
dency.

17. The system as claimed in claim 11, wherein the event
generation and prioritization module gets a routing path
between each pair of PMs of the plurality of PMs for gener-
ating a plurality of events corresponding to a plurality of
physical devices over the routing path.

18. The system as claimed in claim 11, wherein the abstrac-
tion module transfers the VM-level dependency to the PM
communication topology.

#* #* #* #* #*

